Plasma protein adsorption to highly permeable hemodialysis membranes.
نویسندگان
چکیده
Although membrane adsorption of plasma proteins is one of several factors determining the biocompatibility and mass transfer characteristics of a hemodialyzer, this process has not been evaluated rigorously. We performed an equilibrium and kinetic analysis of the binding of proteins of differing molecular weight to highly permeable membranes of differing hydrophobicity and surface change. Hydrophobic, anionic polyacrylonitrile (PAN) and hydrophilic, uncharged cellulose triacetate (CT) membrane fragments were incubated in buffer containing radioiodinated beta 2-microglobulin (beta 2m) or bovine serum albumin (BSA). From an initial solution concentration of 50 mg/liter, both membranes adsorbed significantly more beta 2m than BSA at equilibrium (PAN, 352 +/- 30 vs. 32.1 +/- 2.4 ng; CT, 87.0 +/- 0.6 vs. 30.8 +/- 1.7 ng). These results were consistent with membrane pore exclusion of BSA. Comparison of the slopes of the equilibrium isotherm lines (concentration range, 0 to 220 mg/liter) showed the PAN binding affinity for beta 2m and BSA was 28 and 1.4 times that of CT, respectively. In kinetic studies, the approach to equilibrium versus (time)1/2 was assessed. For all protein-membrane combinations, this relationship was linear, consistent with a diffusion-controlled process. This latter characteristic permitted the determination of beta 2m membrane diffusivity values for both PAN and CT, which were found to be 0.30 and 3.25 x 10(-7) cm2/sec, respectively. These data suggest membrane hydrophobicity more significantly influences the binding of low-molecular weight proteins than that of pore-excluded proteins. In addition, these results demonstrate electrostatic membrane-protein interactions may influence the kinetics of both the adsorption and transmembrane mass transfer of plasma proteins.
منابع مشابه
Preparation of Polyvinylidene Fluoride (PVDF) Hollow Fiber Hemodialysis Membranes
In this study, the polyvinylidene fluoride (PVDF) hollow fiber hemodialysis membranes were prepared by non-solvent induced phase separation (NIPS). The influences of PVDF membrane thickness and polyethylene glycol (PEG) content on membrane morphologies, pore size, mechanical and permeable performance were investigated. It was found that membrane thickness and PEG content affected both the struc...
متن کاملHydrophilic monomers suppress the adsorption of plasma protein onto a poly(vinylidene fluoride) membrane.
Dialysis is the single most important therapy for chronic kidney disease. However, protein adsorption onto hemodialysis membranes promotes clot formation. The aim of the present study was to develop a surface-modified membrane which suppresses protein adsorption. Using plasma polymerization, hydrophilic N-vinyl pyrrolidone (VP) and acryloyl morpholine (ACMO) were polymerized on hydrophobic poly...
متن کاملExamining hemodialyzer membrane performance using proteomic technologies
The success and the quality of hemodialysis therapy are mainly related to both clearance and biocompatibility properties of the artificial membrane packed in the hemodialyzer. Performance of a membrane is strongly influenced by its interaction with the plasma protein repertoire during the extracorporeal procedure. Recognition that a number of medium-high molecular weight solutes, including prot...
متن کاملProteomic Investigations into Hemodialysis Therapy
The retention of a number of solutes that may cause adverse biochemical/biological effects, called uremic toxins, characterizes uremic syndrome. Uremia therapy is based on renal replacement therapy, hemodialysis being the most commonly used modality. The membrane contained in the hemodialyzer represents the ultimate determinant of the success and quality of hemodialysis therapy. Membrane's perf...
متن کاملA New Approach to Provide High Water Permeable Polyethersulfone based Nanofiltration Membrane by Air Plasma Treatment
In this study, polyethersulfone based nanofiltration membranes were modified by air plasma generated through dielectric barrier discharge to increase the membrane hydrophilicity aiming to improve the separation and antifouling characteristics. The effect of plasma time on the physico-chemical and separation properties of membrane was investigated. The PES nanofiltration membranes were fabricate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Kidney international
دوره 48 2 شماره
صفحات -
تاریخ انتشار 1995